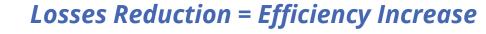
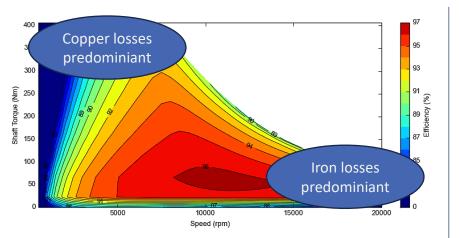
SiC Inverter Control Modules & Reference Designs

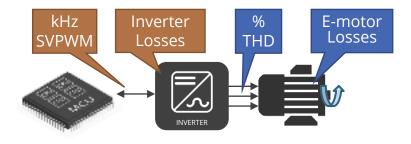
How to increase efficiency and accelerate time to market

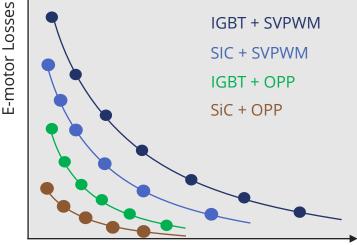
Mike Sandyck, Marketing Director CISSOID


Sic


Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

WHAT IS THE PROBLEM?


Losses = Efficiency Reduction


Two major loss locations:

- Inverter: Switching and conduction losses
- E-motor: Iron and copper losses

Problem

 With current control solution (SVPWM), reducing the e-motor losses increases the inverter losses and vice versa

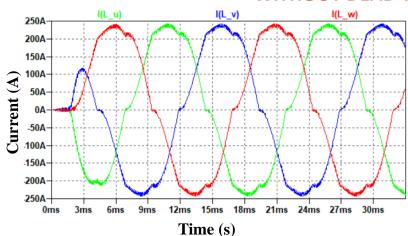
Inverter Losses

Solutions

- Use Wide Band-Gap power switching technology such as SiC or GaN
- Optimize control algorithm and MCU:
 - Dead Time Compensation (DTC)
 - Optimized Pulse Patterns (OPP)

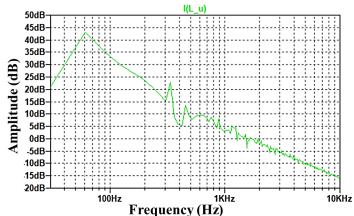
DEAD TIME COMPENSATION

SIMULATIONS IN LTSPICE WITH AND WITHOUT DEAD TIME COMPENSATION

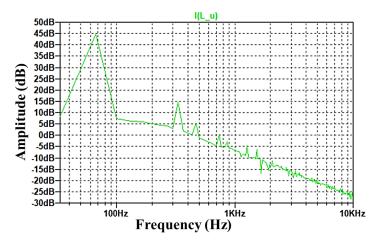


Case Study Speed = 1000 Rpm, Torque= 50 Nm

- SIMULATION PARAMETERS
 - SPECIFIC INPUT DATA :
 - High Voltage Battery Voltage : 650 V
 - DC-link Capacitor : 320 uF / 750 V
 - ICM CXT-PLA3SA12550AA (Pin Fin) : 1200 V / 550A
 - SVPWM modulation
 - Dead time = 2 μs
 - Fswitching = 16 kHz


• PMSM CHARACTERISTICS :

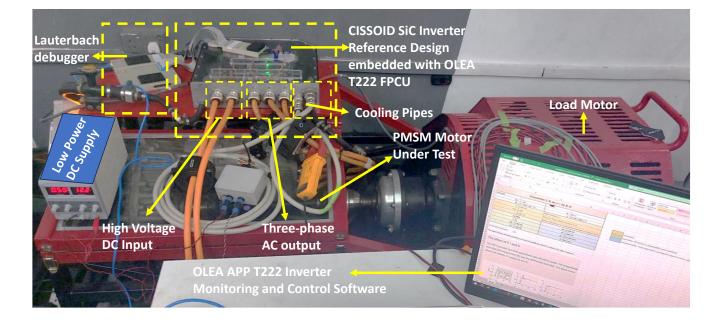
- Number of pole pairs : 4
- Flux linkage : 0.048 Wb
- D-axis inductance : 55 μH
- Q-axis inductance : 150 µH
- Stator self-inductance : 160 μ H
- Stator self-resistance : 0.008 Ω



I(L_V) l(L_u) I(L_w) 250A 200A 150A 100A-Current (A) 50A **0A** 50A 100A 150A 200A -250A 0ms 3ms 6ms 9ms 12ms 15ms 18ms 21ms 24ms 27ms Time (s)

WITHOUT DEAD TIME COMPENSATION

WITH DEAD TIME COMPENSATION


December 2024 | © CISSOID 2000 – 2024 all rights reserved | Slide4

CASE STUDY : AUTOMOTIVE APPLICATION

VSI Rated Parameter(s)	Value			
Rated Power of the Inverter	Up to 350 kW			
Rated Voltage of the Inverter	Up to 850 V			
Rated Voltage of IPM	1200 V			
Rated Current of IPM	550 A			
SiC MOSFET Turn-on time T _{on}	(97+102)= 199 ns			
SiC MOSFET Turn-off time T _{on}	(276+52)= 328 ns			
PMSM Rated Parameter(s)	Value			
Rated Power	260 kW			
Rated Torque	180 Nm			
Rated Speed	14000 RPM			
Number of pole pairs	4			
Switching Frequency F _s	12 kHz, 16kHz			
User-defined Dead time T _d	2 µs			
DC Bus Voltage V _{dc}	650 V			

DTC - MOTOR BENCH VS SIMULATIONS

Case Study Speed = 1000 Rpm, Torque= 50 Nm

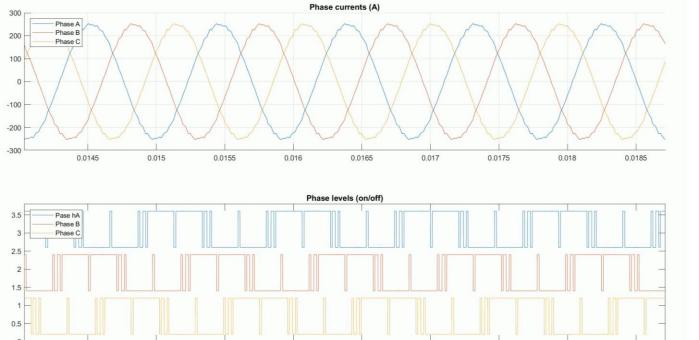
MOTOR BENCH DATA 400 Phase U and Phase V currents I. without DTC I, without DTC TELEDYNE LECROX 300 Apeak 200 Current (A) 0 -200 I. with DTC -400 0 5 10 15 20 25 30 35 40 45 50 (a) Time (ms) Without Dead Time Compensation (DTC) Vith Dead Time Compensation (DTC) **3rd Harmonics 7th Harmonics** 11th Harmonics Voltage (V) 5th Harmonics Fundamental 600 Hz 0 200 400 600 800 1000 1200 1400 1600 1800 2000 (b) Frequency (Hz)

COMPARATIVE ANALYSIS

I _u FFT (simulations)				I _u FFT (motor bench)				
	Fund. Normalized (%)	5 th Normalized (%)	7 th Normalized (%)	THD (%)	Fund. Normalized (%)	5 th Normalized (%)	7 th Normalized (%)	THD (%)
W/O DTC	100	6.2	3.2	7.3	100	8.9	5.4	7.8
With DTC	101.4	2.6	1.2	3.1	101	5.4	2.8	4.7
Improv.(%)	1.4	59	63	4.2	1	39	48	3.1

✓ Phase current THD improved by 4%

December 2024 | *© CISSOID 2000 – 2024 all rights reserved* | Slide6



OPTIMIZED PULSE PATTERNS

WHAT ARE OPTIMIZED PULSE PATTERNS?

0.0165

0.017

0.0175

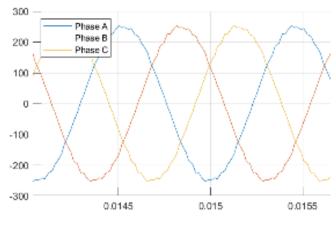
0.018

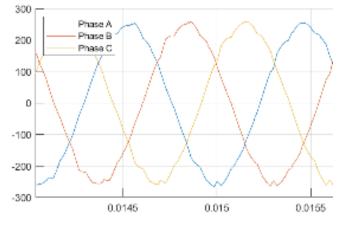
0.0185

0.0145

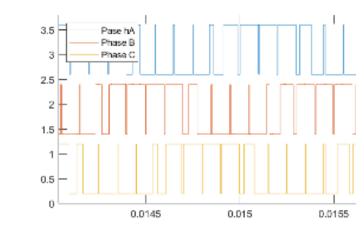
0.015

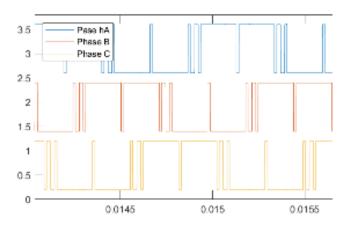
0.0155


0.016


- A control method (or switching modulation) which replaces conventional modulations as SVPWM, DPWM, SIX STEPS, etc.
- The OPP modulation is based on the electrical angle: It is not a time-based modulation such as conventional modulations.
- OPP applies a switching pulse pattern repetitively at each electrical period.
- Switching pulses can be located at any angular position: there is no PWM carrier.
- Full freedom on where to place switching pulses by removing the constraint of the fixed frequency and symmetries on the gate pulses
- OPPs are optimized for a motor speed-torque range.
- OPPs are generated offline in a digital process using tuned models of the inverter and motor

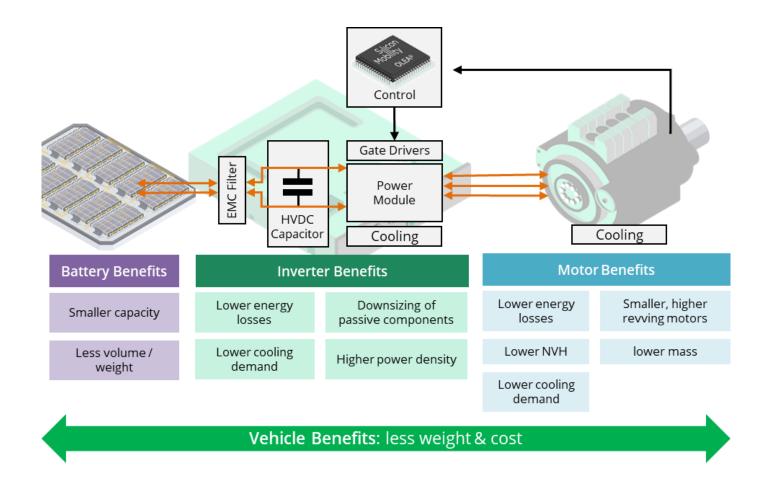
OPP VS SVPWM GATE CONTROL





SVPWM

Number of switching pulses and related angle positions are determined to optimize the modulation upon different criteria:


- Inverter losses
- E-motor losses
- Total Harmonic Distortion (THD)
- Noise, Vibration and Harshness (NVH) generated in the e-motor
- Current ripple

OPP BENEFITS

Motor & inverter benefits

- up to 5% points efficiency gain (inverter and motor) at critical load points
- control of electrical machines revving supporting 100.000 rpm and above
- 20% higher torque out of the same motor or 20% lower battery voltage by extended overmodulation
- improved, tuneable NVH behaviour

Vehicle benefits

- Cost and weight savings by downsizing of motors
- Cost and weight savings downsizing by 2 the DC-LINK capacitor and reducing by 40% the peak cooling demands (Inverter)
- Cost and weight savings from lower battery voltage or higher power/peak torque out of the same motor
- Cost and weight savings from lower sound-insulation requirements

CISSOID SOLUTIONS

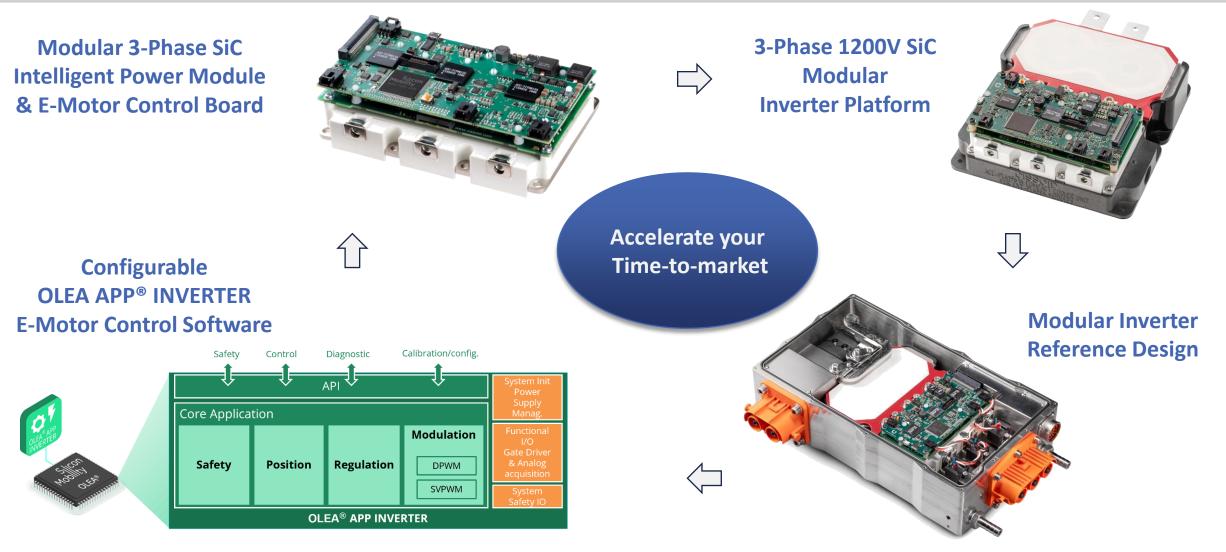
CISSOID'S UNIQUE PRODUCTS

SiC Intelligent Power Modules

- Unique power range of 100 350kW
- Single package/footprint
- In-house 2nd generation gate driver chipset
- Stable operation over the complete temperature range
- Full assembly rated to 125°C ambient
- Lightweight (550~590g)

SiC Inverter Control Modules

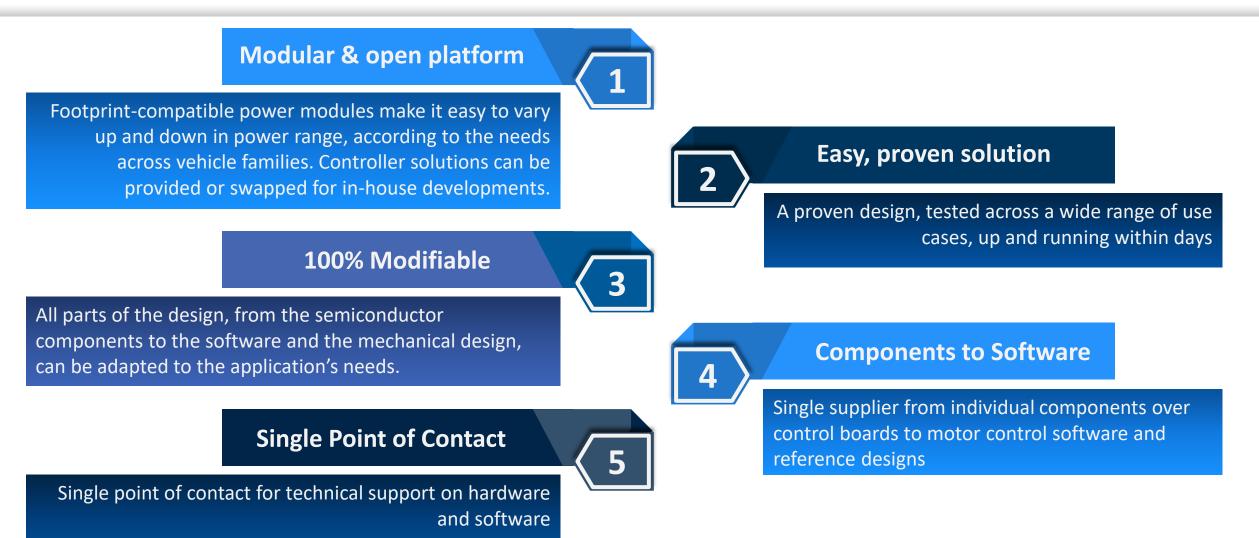
- Complete HW + customizable SW
- Unique processor reduces fault reaction time to tens of nanoseconds
- Unique dead time compensation SW reduces THD by 4~5%


SiC Inverter Reference Designs

- Start testing within days
- Lab version (bench tests) and in-vehicle version (PoC, prototyping, field testing)

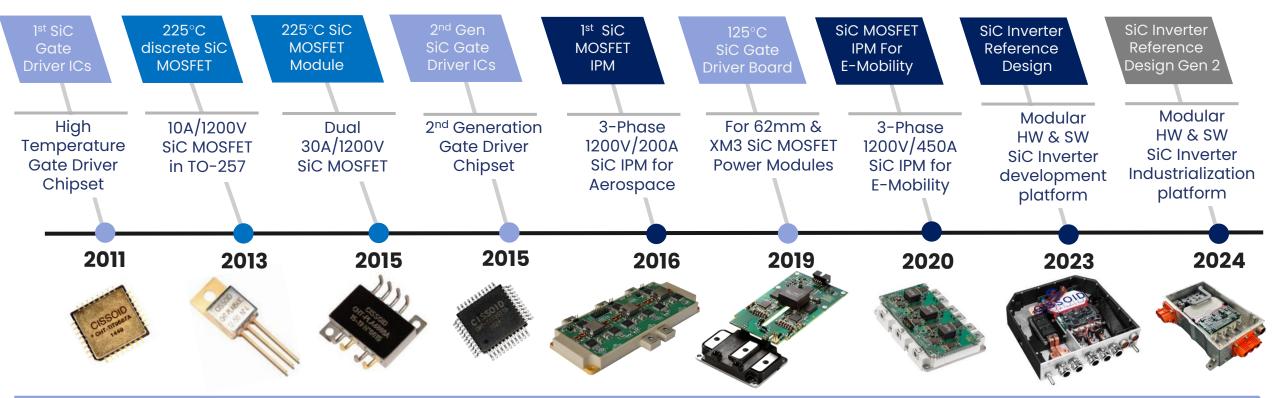
MODULAR SIC INVERTER PLATFORM

SIC INVERTER REFERENCE DESIGNS


- Output power target 100 350kW
- Operating bus voltage 100 850V
- High power density >50kW/litre
- 3-phase 1200V SiC power module
- Ultra-fast OLEA[®] T222 FPCU control board
- Customizable OLEA[®] Inverter software
- DC and phase current sensors
- 900V/135µF DC Link Capacitor
- TDK CarXield[®] 900V/400A EMI filter
- DC Bus passive discharge
- Liquid cooling for power module & EMI filter

Bench-top version for lab testing On-board version for in-vehicle testing (376x220x88)

CISSOID'S UNIQUE EV INVERTER SOLUTIONS


QUESTIONS?

BACKUP INFORMATION

13 YEARS OF SILICON CARBIDE INNOVATION

SiC Gate Drivers

Reliable SiC Power Packaging

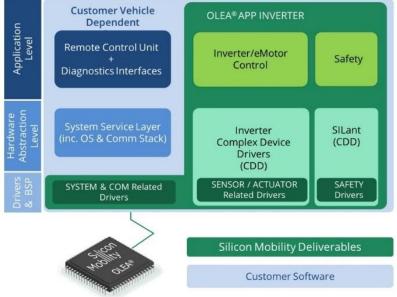
SiC Intelligent Power Modules (IPM)

SiC Inverter Reference designs

December 2024 | © CISSOID 2000 – 2024 all rights reserved | Slide18

INVERTER CONTROL MODULE (ICM) IN PARTNERSHIP WITH SILICON MOBILITY

Silcon Mobility An Intel Company



- OLEA[®] Solution Control Board mechanically & electrically integrated with CISSOID SiC IPMs
 - Based on OLEA® T222 FPCU controller chip

Interfaces

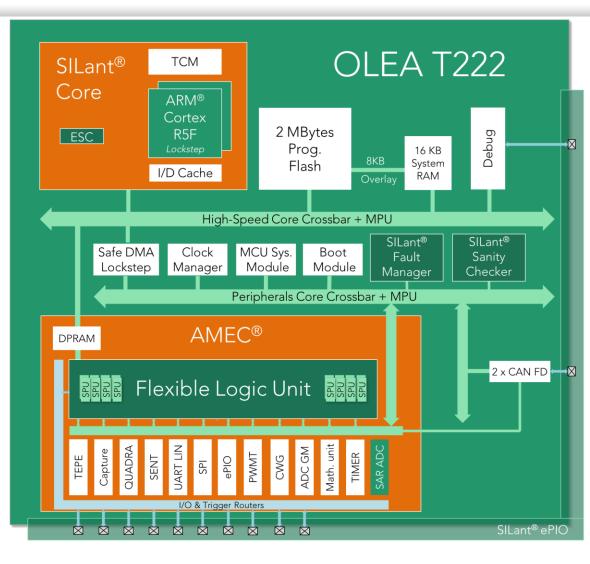
- Power module: 3-Phase outputs & 3x2 Power Supply Pins
- Motor: Resolver, encoder, current/temperature sensors
- Vehicle: CAN, LIN & Battery supply
- Developer: SWD (debug) & Trace Port Unit (real-time debug & calibration)
- OLEA[®] APP INVERTER (by Silicon Mobility) Highly configurable inverter & motor control software
 - Advanced control algorithms for highly energy-efficient systems
 - Closed-loop current control based on Field Oriented Control regulation
 - Frequency scaling SVPWM and DPWM modulation up to 50 kHz with short dead time compensation

19

OLEA® T222 PROCESSOR

Dazzling fast real-time processor

System-level fault detection, correction and containment in tens of nanoseconds.


- Functional Safety Architecture
 - SILant Core Safety Integrated Level Agent Dual 200MHz ARM Cortex R5F in Lockstep
 - Safe DMA transfers with CRC checks
 - Real-time 100% timing predictability

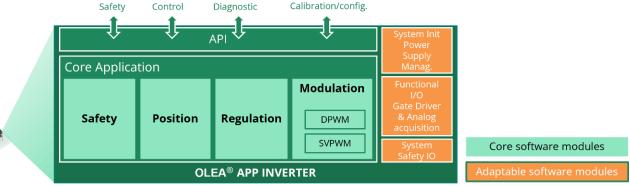
AMEC – Advanced Motor Event Control

- HW programmable Flexible Logic Unit
- Parallel access for acquisition & control

Certification

- ISO26262 ASIL-D Certified (T222 processor + OLEA SW)
- AUTOSAR 4.3 (OLEA SW)
- AEC-Q100 Grade 1 / -40°C to +125°C (T222 processor)
- ICM: ISO26262 ASIL-C (end 2024), AQG-324 (beginning 2025), ASIL-D (end 2025)

OLEA[®] APP INVERTER SOFTWARE


Motor types

- PMSM (Permanent Magnet Synchronous Motor)
- WRSM (Wound Rotor Synchronous Motor)
- Axial/Radial, 3-Phases/6-Phases
- Modulation
 - SVPWM (Space Vector Pulse Width Modulation)
 - DPWM (Discontinuous Pulse Width Modulation)
 - Variable switching frequency & Dead-time compensation
- Motor position sensors supported
 - SIN/COS resolver, AMR-GMR, Hall effect, etc
- Motor control
 - Flux Weakening management
 - Active Discharge
 - FOC (Field Oriented Control)
 - D/Q inductances LUT
 - Torque derating LUT based on Speed/DC-Link and T°
 - Slew rate limitation
 - Torque/Current/Speed control
 - Rotor control
 - Clockwise/Anti-clockwise

Motor Control APIs

- to pilot the e-motor with Torque or Speed command
- to manage the control state (Power-up, Init, Standby, Active, Powerdown, Power-off)
- to get the motion state (Drive Motion/Braking or Reverse Motion/Braking)
- Safety APIs
 - to manage the faults/warning such as over/under current/voltage on phases, the over-voltage on DC-Link, the over-temperature on Power Transistor or e-motor
 - to get the Safe state
- Diagnostics APIs
- Calibration/Configuration APIs

OPTIMIZED PULSE PATTERNS (OPP) BASICS

- The OPP modulation is based on the electrical angle, it is not a time-based modulation (such as SVPWM)
- OPP applies a switching pulse pattern repetitively at each electrical period. Phases are shifted by 2π/3 relatively to one another
- Switching pulses can be located at any angular position: there is no PWM carrier
- OPPs are characterized by their modulation ratio and their number of switching angles, while being optimized for a motor speed-torque range
- The modulation ratio is defined as $m = \sqrt{Vd^2 + Vq^2} / (Vbus/2)$
- OPPs are generated offline in a digital process using models of the inverter and motor
- The pulse patterns optimizations reduce global or independent criteria such as:
 - Inverter and motor losses
 - THD, torque ripple, vibrations

CERTIFICATION & SUPPORT

Certification - Silicon Mobility

- ISO26262 ASIL-D Certified (T222 processor + OLEA SW)
- AEC-Q100 Grade 1 / -40°C to +125°C (T222 processor)
- AUTOSAR 4.3 (OLEA SW)

Certification - CISSOID

Intelligent Power Module:

AQG-324 (beginning 2025)

Inverter Control Module:

- ISO26262 ASIL-C (end 2024)
- AQG-324 (beginning 2025)
- ASIL-D (end 2025)

In-house tech support

- Power modules & gate drivers
- Inverter Control Modules
- Reference designs
- Software
- Setup & calibration